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Abstract. We have calculated the quantum quadrupolar interaction due to charge density fluctuations
of localized 4f-electrons in γ−Ce by taking into account the angular dependence, the degeneracy of the
localized 4f−orbitals and the spin-orbit coupling. The calculated crystal field of 4f electronic states is in
good agreement with neutron diffraction measurements. We show that orientational ordering of quantum
quadrupoles drives a Fm3̄m → Pa3̄ phase transition at ∼ 86 K which we assign with the γ−α transfor-
mation. In the Pa3̄ phase the centers of mass of the Ce atoms still form a face centered cubic lattice. The
theory accounts for the first order character of the transition and for the cubic lattice contraction which
accompanies the transition. The transition temperature increases linearly with pressure. Our approach
does not involve Kondo spin fluctuations as the significant process for the phase transition.

PACS. 71.10.-w Theories and models of many electron systems – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.45.-d Collective effects – 64.70.Kb Solid-solid transitions

1 Introduction

While the Landau-Fermi liquid theory provides a suc-
cessful description of conventional metals, it has become
increasingly clear that the behavior of many complex
materials, such as cuprate superconductors and certain
transition metals, lies outside the well-explored properties,
suggesting that fundamentally novel and unexpected phe-
nomena of metallic behavior occur. Since all these materi-
als besides conventional itinerant metallic states are char-
acterized by localized (and degenerate) electronic states
(3d or 4f), it is important to understand the peculiarities
connected with them.

In this paper we want to study the direct Coulomb in-
teraction which arises due to charge density fluctuations
between degenerate localized states. We apply and extend
the formalism [1–3], which initially was developed for the
description of orientation dependent properties in molec-
ular crystals, to the description of degenerate 4f -orbitals
of pristine metallic cerium.

Metallic cerium has been much studied because of its
unique pressure-induced isostructural (fcc to fcc) γ−α
first-order phase transition [4]. The transition accompa-
nied by an ≈ 15% volume collapse, occurs at a pressure of
8 kbar at room temperature, and the γ−α phase boundary
ends in a critical point (∼550 K, ∼18 kbar). The physical
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properties of the two phases are different. For example,
in the γ phase the magnetic susceptibility χ(T ) follows a
Curie-Weiss law, indicative of a 4f -derived local magnetic
moment close to that of the 2F5/2 ground state of a Ce3+

ion. In the collapsed α phase the overall temperature de-
pendence of χ is very weak compared with that of the
γ phase suggesting that α-Ce is basically a Pauli param-
agnet and the local moments disappear [5,6,4]. However,
the susceptibility χ is ‘enhanced’ by a factor 2-4 in com-
parison with the value χ0 deduced from electronic specific
heat data [5–7].

In a first interpretation [8] (‘promotional’ model) the
localized 4f electrons are believed to be transferred to
the (6s5d)3 conduction band in α-Ce. In contrast to this
model, positron annihilation experiments which probe the
electron density have shown that there is no substan-
tial difference in the number of 4f electrons in the two
phases [9].

On the basis of thermodynamic consideration of cohe-
sive properties Johansson proposed to describe the γ−α
phase transition as a Mott transition for the 4f -electron
subsystem without significant modification of the 4f oc-
cupation number [10]. Though in agreement with some
experimental observations [9,11], the concept of a Mott-
like transition for the cerium electronic 4f -subsystem
has severe internal difficulties since delocalization of
f -orbitals in the α phase would involve huge energy trans-
formations in cerium, of the order of the Coulomb on-site
repulsion parameter Uff which by several orders of mag-
nitude exceeds the characteristic energy of 100–200 K.
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Fig. 1. Schematic energy diagram of the ground state of metal-
lic cerium. Solid arrow indicates energy difference between 4f1

and 4f2 configurations, Uff ≈ 6 eV. Dashed arrow indicates
energy loss of Coulomb energy for hypothetical delocalization
of f-states, Uff/2 ≈ 3 eV.

Subsequent photoemission [12–14] and bremsstrahlung
isochromat spectroscopy (BIS) [15,16], as well as X-ray
absorption [17], Compton scattering measurements [11]
and positron annihilation [9] confirmed a 4f1 → 4f0 + e−

peak far away (≈ 2 eV) from EF and suggested a 4f occu-
pation nearly equal to one on both sides of the transition.
These results are summarized in Figure 1, where schemat-
ically the ground state of metallic cerium is shown.

The most accepted interpretation of the electronic
properties of cerium, and of its metallic compounds, has
been worked out on the basis of the Anderson model
[18]. According to the degenerate Anderson model, the
hybridization of the strongly correlated atomic-like f or-
bitals with the conduction band leads to a singlet non-
magnetic ground state which is separated by the Kondo
energy kB TK from a manifold of excited magnetic 4f
states [19,20]. Gunnarsson and Schönhammer proposed
a model [19] based on the Anderson approach, which has
been widely used for a semiquantitative interpretation of
Ce-based compounds [21]. In contrast to the Mott-like in-
terpretation of the phase transition [10], a localized nature
of f -states in both γ and α phases of cerium is assumed.
The transition itself is explained in terms of the properties
of a ‘Kondo’ Ce impurity. According to the Kondo volume
collapse (KVC) scenario [22–24], the transition and the
volume collapse are driven by the free-energy gain asso-
ciated with spin fluctuations. Although the KVC theory
explains the disappearance of the local moments, it is
unable to specify the order parameter. Therefore, the
existence of phases with other crystal symmetry (the
tetragonal [25,4] and the orthorhombic [26,4] α′ phase) is
unaccounted for. In addition the physical mechanism driv-
ing the phase transition remains unclear. In fact, it is the
postulated volume dependence of the Kondo characteris-
tic parameter J/D [22,24] or of the averaged hybridiza-
tion parameter π|V (ε)|2 [27,23], which leads to a van der
Waals-like equation of state and gives isotherms similar to
the liquid-gas transition.

The ‘Kondo scenario’ had become widely used for the
interpretation of a large amount of spectroscopic data dur-
ing the last decade [28,16,21]. However, recent photoe-
mission results revealed unexpected discrepancies [29–33].
It then was concluded that the treatment of references
[19,20] is irrelevant for the interpretation of strongly cor-
related electron systems. The temperature invariance of
photoemission spectra of Ce heavy fermions [29] and of
Yb-based compounds [31] as well as narrow band behavior
near the Fermi energy [32] gave new impulse to the Mott-
like interpretation of the γ−α phase transition in cerium
[34,35]. However, this viewpoint is not widely accepted
and both experimental data and their interpretation are
the object of intense discussion [21,34,36].

In this paper we present an alternative to the Kondo
and the Mott transitions picture of the γ−α phase trans-
formation. Our approach is based on the existence of
repulsive orientational interactions between quadrupolar
charge density fluctuations. These fluctuations are formed
because of quantum transitions between degenerate local-
ized f -states of cerium. Quadrupolar (Q) charge density
fluctuations are orientationally anisotropic and are classi-
fied according to Eg and T2g irreducible representations
of the cubic point group Oh. We find that quadrupolar
ordering leads to an antiferrorotational configuration of
space group Pa3̄ while the centers of mass positions of the
Ce atoms still occupy face centered cubic (fcc) lattice sites
in the α phase.

Quadrupolar orderings have been observed in a num-
ber of cerium compounds such as CeAg [37], CeB6 [38],
and its diluted alloy CexLa1−xB6 [39]. Quadrupolar cou-
plings are also discussed in connection with metamag-
netism in other lanthanide-based intermetallic systems
[40]. In case of CeAg the quadrupolar ordering was ana-
lyzed [37] on the basis of a mean field Hamiltonian, which
includes the direct quadrupolar-quadrupolar interaction
and a coupling of quadrupoles with lattice distortions. In
the disordered phase the free energy was obtained using
a susceptibility formalism. In case of CeB6 a few mecha-
nisms have been proposed utilizing the interplay between
spin and orbital ordering [41] or between magnetic and
quadrupolar ordering [38,42] at low temperatures. In this
paper we present the microscopic approach which allows
us to obtain the crystal field effects, the quadrupolar cou-
pling, Landau free energy and lattice distortions on equal
footing. It should be emphasized that in the present theory
we consider charge density ordering which distinguishes
our approach from the model of reference [41] and others
where concepts of orbital ordering [43] are employed.

2 The ground state of γ−Ce and main
interactions

We start with description of the high temperature phase,
that is γ−Ce. The ground state configuration of a neu-
tral cerium atom is [Xe]4f15d16s2. The maximum of
the 4f -radial distribution function 4π r2|Rl=3(r)|2 (where
Rl=3(r) is the radial part of the 4f wave function and r
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is radius) is at rmax = 0.71 a.u. (atomic units), which is
substantially smaller than the metallic radius of cerium
(Rm ≈ 3.45 a.u.) and the corresponding radii of the other
valence electrons (3.69 a.u. for 6s and 2.16 a.u. for 5d).
On the other hand, calculations of the on-site repulsive
Coulomb integrals yield that Uss/2 = 2.87 eV for 6s wave
function Udd/2 = 4.27 eV for 5d wave function while for
4f -state it reaches the value Uff/2 = 11.64 eV [44]. Not
surprisingly, the valence electrons form two electronic sub-
systems in metallic cerium. Valence electrons of 6s and
5d type easily mix and give a Landau type Fermi liquid
while 4f electrons preserve atomic-like behavior. In the γ
and α phase two 6s electrons and one 5d electron form
a conventional electronic conduction band (6s5d)3 while
the fourth valence electron is described by atomic-like 4f
orbitals. Therefore, we assume that the 4f−electrons re-
main localized throughout the γ−α phase transition and
rule out a Mott-transition like interpretation.

In such composite electronic system we distinguish two
main groups of interactions, the on-site (OS) and the inter-
site (IS) ones. The group of OS interactions also consists
of two parts. First, there is the electronic interaction be-
tween itinerant band (6s5d)3 electrons. (If it is not spec-
ified explicitly by the general term of ‘electronic inter-
action’ we mean Coulomb and exchange interactions in
accordance with the Hartree-Fock approach.) In addition,
there is the interaction between the band electrons and
localized 4f electrons. On this stage we have to take into
account strong electron Coulomb and exchange interac-
tions. It is possible to go further and include correlation
effects by considering several Slater determinants (multi-
configurational Hartree-Fock approach). In the following
we assume the on-site correlation effects which occur in
both γ and α phases are similar and most of the small
energy associated with correlations cancels out in the dif-
ference. Therefore, we exclude from consideration configu-
rations with two f2 and zero f0 occupation of 4f -shell as
insignificant. (Such correlations are considered as impor-
tant in the Gunnarsson and Schönhammer model [19].) As
we shall see our approach does not depend on particular
details of the ground state. The crucial assumption (con-
firmed by experiment) is that in γ-Ce there exists a con-
ventional metallic (6s5d)3 band and a single 4f electron,
which is associated with the orbital angular dependence
of Y m3 (m = −3, ..., 3) spherical harmonics.

Secondly, we have inter-site interactions within the
subsystem of localized 4f orbitals. Expanding the
Coulomb inter-site interaction in multipole series we find
that the first nonvanishing contribution is due to the
quadrupolar interaction, Q−Q. In principle in this group,
we can also include direct inter-site exchange interactions.
Such interactions have been considered by Ohkawa [41] for
CeB6. However, since the quadrupolar inter-site coupling
is larger than its inter-site exchange partner (normally
the direct Coulomb interaction is stronger than the cor-
responding exchange), as a first approximation we omit
the exchange interactions and the corresponding magnetic
effects. This is in accordance with experimental observa-
tions that in β-Ce the antiferromagnetic ordering occurs

at 12.45 and 13.7 K for two distinct cerium sites [4]. These
temperatures are substantially lower than the transition
temperature of the γ−α transformation, ∼ 100−170 K.

The description of the anisotropic Q−Q interaction
and of its consequences, which so far have not been consid-
ered in the Hartree-Fock scheme and in density functional
(DFT) approaches, is the main goal of the present paper.
In this Section and Appendix A we will show that a part of
multipolar interactions can be reduced to a single particle
term giving rise to the crystal field effects. In Section 3 we
will see that the quadrupolar Q−Q interaction becomes
maximum and attractive at the X point of the Brillouin
zone, which leads to a quadrupolar order with space group
Pa3̄. Interactions of the quadrupoles with the conduction
electrons (Q−I interactions) could lead in principle to a
screening of the Q−Q interaction. We will show by sym-
metry arguments (Appendix B) that the Q−I interaction
is inefficient at the X point of the Brillouin zone.

We consider a face centered cubic crystal of N Ce
atoms with nuclear positions X(n), n = 1 − N . We as-
sume that the corresponding 4f electrons have coordinates
R(n) = X(n) + r(n) and are localized on spheres with
radius |r(n)| = rf = 1.378 a.u. Therefore, as a first ap-
proximation we reduce the 4f -radial dependence to that
described by the characteristic radius rf . Notice, that if
the radial dependence is taken into account then an ap-
preciable contribution to the Coulomb repulsion between
two neighboring 4f electrons is due to ‘tail’ (r > rmax)
or close contact regions of their wave functions. In order
to reproduce correctly the intersite repulsion these regions
with r > rmax have to be taken with a larger weight and

we have chosen rf ∼
√
〈r2〉4f =

√∫
r2R

(γ)
l=3(r) 4πr2 dr,

where R
(γ)
l=3(r) is the radial part of the 4f -wave function

in the γ phase [45]. Then, in describing the 4f electrons,
we will take into account only the angular and spin parts
of the atomic orbitals.

We consider the spherical harmonics Yml (n̂) = 〈n̂|l,m〉
with the phase convention of reference [46], where n̂ is the
unit vector in direction r(n) with polar angles Ω(n) =
(Θ(n), ϕ(n)). It is convenient to use real spherical har-
monics Ym,cl (n̂), Y m,sl (n̂), Y 0

l (n̂):

〈n̂|l, (m, c)〉 =
1
√

2
(〈n̂|l,m〉+ 〈n̂|l,−m〉), (2.1a)

〈n̂|l, (m, s)〉 =
−i
√

2
(〈n̂|l,m〉 − 〈n̂|l,−m〉), (2.1b)

〈n̂|l, 0〉 = 〈n̂|l,m = 0〉. (2.1c)

The electronic spin function u(sz) is u+ = [10] if the spin
coordinate sz is +1/2 and is u− = [01] if sz is −1/2. With
l = 3, there are seven values m = −3, . . . ,m = +3 and
two sz = −1/2, +1/2. In absence of a spin-orbit coupling
and of a crystal field, the 14 states |3,m〉 ⊗ |sz〉 are de-
generate in energy, ε(m, sz) = ε0, and for convenience
we set ε0 = 0. For ions of lanthanides in solids the spin-
orbit coupling is known to dominate crystal field effects.
A discussion of spin-orbit coupling Vso is given in Ap-
pendix A. Starting with noninteracting 4f states of Ce in
the fcc crystal we find that the main perturbation due to
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Table 1. Energy spectrum of the operator V0(n) in the γ
phase. Numbers in parentheses stand for degeneracy, Γ refers
to the double valued representations of Oh, µ labels the repre-
sentations that occur more than once; ∆ε = 3008.1 K.

i Γ, µ εi, in K (εi − ε1), in K

1,2 Γ7, 1 (2) −1766.9 0.0

3-6 Γ8, 1 (4) −1703.0 63.9

7,8 Γ6 (2) 1241.2 ∆ε

9-12 Γ8, 2 (4) 1299.0 ∆ε+57.8

13,14 Γ7, 2 (2) 1333.6 ∆ε+92.4

the spin-orbit coupling Vso gives 6 fold levels with J = 5/2
and 8 fold levels with J = 7/2. The corresponding eigen-
functions 〈n̂| l = 3, s = 1

2 ; J, Jz〉 are given by the vector

model [47] for addition of orbital (l = 3) and spin (s = 1
2 )

momenta and transform according to double valued rep-
resentations D 5

2
and D 7

2
.

In a cubic crystal, these degeneracies are further lifted
and one obtains three doublets (two of symmetry Γ7 and
one of Γ6) and two quartets of symmetry Γ8, in correspon-
dence with the scheme [48]

D 5
2
→ Γ7 + Γ8, (2.2a)

D 7
2
→ Γ6 + Γ7 + Γ8. (2.2b)

We recall that Γ6, Γ7 and Γ8 are irreducible representa-
tions of the double cubic group O′h. The associated 14
eigenvalues εi and eigenfunctions 〈n̂|i〉 are given by diag-
onalization (see Appendix A) of the corresponding matrix
of the single particle potential operator

V0 = Vso + VCF. (2.3)

Here VCF stands for the crystal electric field potential
which has the unit symmetry of the point group Oh. It
is the potential experienced by a single 4f electron when
spherically symmetric Coulomb contributions from nuclei

V
(n)

CF , core electronic shells V
(core)

CF , conduction electrons

V
(c)

CF and 4f electrons V (f) at the twelve neighboring sites
are taken into account:

VCF = V
(n)

CF + V
(core)

CF + V
(c)

CF + V
(f)

CF . (2.4)

Below in this section we will calculate V
(f)

CF and in Ap-
pendix A we specify the other contributions. We quote
the calculated energy levels εi in Table 1 and discuss Vso,
VCF and V0 in Appendix A. In the following we will label
the calculated eigenfunctions 〈n̂|i〉 and the eigenvalues εi
by the index i = 1− 14 as it is shown in Table 1. Our cal-
culations of the crystal field effects are in good agreement
with neutron diffraction measurements [49] which show
that the Γ8 quartet is 67 K above the ground state Γ7

doublet. Recent neutron diffraction experiments [7] gave
a similar value of 5.5± 0.5 meV (63.8± 5.8 K).

Interactions between 4f electrons at different sites will
cause transitions between the quantum states i. We denote
the state kets at site n by |i〉n. We will use

14∑
i=1

|i〉n〈i|n = 1, n〈i|j〉n ′ = δij δn n′ . (2.5)

Since

V0(n) |i〉n = εi |i〉n, (2.6)

we obtain

V0(n) =
∑
i

|i〉n εi 〈i|n. (2.7)

We consider the intersite (n 6= n′) Coulomb interaction
between 4f electrons:

U (f) =
1

2

∑
n,n′

V (n,n′), (2.8a)

V (n,n′) =
1

|R(n)−R(n′)|
, (2.8b)

with charge units e = 1. We expand in terms of sym-
metry adapted functions [46] (SAF’s) which transform as
irreducible representations of the cubic site group Oh:

V (n,n′) =
∑
l l′

∑
τ τ ′

vτ τ
′

l l′ (n− n′)Sτl (n̂)Sτ
′

l′ (n̂′). (2.9)

The SAF’s Sτl (n̂) are symmetry adapted linear combina-
tions of spherical harmonics [46]. The index τ stands for
(Γ, µ, k), where Γ denotes the irreducible representation,
µ labels the representations that occur more than once
and k denotes the rows of a given representation. The ar-
gument n stands again for Ω(n) of the radius vector r(n).

The coefficients vτ τ
′

l l′ are defined by

vτ τ
′

l l′ (n−n′)=

∫
dΩ(n)dΩ(n′)

1

|R(n)−R(n′)|
Sτl (n̂)Sτ

′

l′ (n̂′)

(2.10)

where dΩ = sinΘ dΘ dϕ. We rewrite (2.9) in the state
space of 4f electrons:

V (n,n′)=
∑
|i〉n〈j|n vij, i′j′(n−n′)|i′〉n′〈j

′|n′ , (2.11)

with summation over the initial states i, i′ and final states
j, j′. Here

vij, i′j′(n− n′) =
∑

cτl (ij) cτ
′

l′ (i
′j′) vτ τ

′

l l′ (n− n′),

(2.12)

with summation over l, l′, τ, τ ′ and where

cτl (ij) = 〈i|Sτl |j〉 =

∫
dΩ 〈i|n̂〉Sτl (n̂)〈n̂|j〉 (2.13)

are electronic multipole transition matrix elements. Notice
that cτl (ij) is independent of the site. If Sτl is chosen to
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Table 2. Calculated coefficients 〈l, (m)|Sτl=2|l
′, (m′)〉, τ =

(Eg, k), (T2g, k), l = l′ = 3, (m), (m′) stand for (m,c) or
(m, s) of real spherical harmonics, (2.1a-2.1c); 〈b|Sτl=2|b

′〉 =
〈l, (m)|Sτl=2|l

′, (m′)〉δsz s′z , and sz, s
′
z are spin components.

Those functions which are not shown in this Table give zero
contributions to all Sτl=2 functions.

(m) (m′) (T2g, 1) (T2g , 2) (T2g, 3) (Eg, 1) (Eg, 2)

0 0 0 0 0 0.16821 0

0 (1,c) 0 0.05947 0 0 0

0 (2,c) 0 0 0 0 −0.18806

0 (1,s) 0.05947 0 0 0 0

0 (2,s) 0 0 −0.18806 0 0

(1,c) (1,c) 0 0 0 0.12616 0.14567

(1,c) (2,c) 0 0.11516 0 0 0

(1,c) (3,c) 0 0 0 0 −0.09403

(1,c) (1,s) 0 0 0.14567 0 0

(1,c) (2,s) 0.11516 0 0 0 0

(1,c) (3,s) 0 0 −0.09403 0 0

(2,c) (3,c) 0 0.14868 0 0 0

(2,c) (1,s) −0.11516 0 0 0 0

(2,c) (3,s) 0.14868 0 0 0 0

(3,c) (3,c) 0 0 0 −0.21026 0

(3,c) (1,s) 0 0 0.09403 0 0

(3,c) (2,s) −0.14868 0 0 0 0

(1,s) (1,s) 0 0 0 0.12616 −0.14567

(1,s) (2,s) 0 0.11516 0 0 0

(1,s) (3,s) 0 0 0 0 −0.09403

(2,s) (3,s) 0 0.14868 0 0 0

(3,s) (3,s) 0 0 0 −0.21026 0

be real [46] then cτl (ij)∗ = cτl (ji). Since |i〉 and |j〉 refer
to orbitals with l = 3, we see that only functions cτl (ij)
with l even can differ from zero. If we consider another
orthonormalized basis with state vectors |b〉, b = 1 − 14
then

cτl (ij) =
∑
b b′

〈i|b〉〈b|Sτl |b
′〉〈b′|j〉

=
∑
b b′

〈i|b〉cτl (b b′)〈b′|j〉, (2.14)

where 〈i|b〉 determines a unitary matrix of transforma-
tion and where the coefficients cτl (b b′) are given in this
new basis. In Table 2 we quote the electronic quadrupolar
matrix elements cτl=2(b b′) for the basis with real spher-
ical harmonics (A.15) which is defined in Appendix A.
Since the multipolar integral (2.10) varies like |R(n) −
R(n′)|−(l+l′+1), we will restrict ourselves to nearest neigh-
bor interactions on the fcc lattice, in addition we will
retain only the lowest values of l and l′. Notice that by
symmetry dipolar (l = 1) matrix elements between 4f
states are zero.

Table 3. Calculated parameters vττ
′

22 (n−n′), τ, τ ′ = T2g, in K.
First site coordinates (n) are (0, 0, 0). Last column refers to
labels of corresponding matrix elements used in reference [50].

Sτ2 n′ Sτ
′

2 γ−Ce α−Ce Ref. [50]

Y 1,s
2 (0, 1

2 ,
1
2 ) Y 1,s

2 872.6 1190.7 γ

Y 1,s
2 ( 1

2 ,
1
2 , 0) Y 1,s

2 −275.6 −376.0 α

Y 1,s
2 ( 1

2 ,
1
2 , 0) Y 1,c

2 −459.3 −626.7 −β

Table 4. Calculated parameters vττ
′

22 (n−n′), τ, τ ′ = Eg, in K.
First site coordinates (n) are (0, 0, 0).

Sτ2 n′ Sτ
′

2 γ−Ce α−Ce Ref. [50]

Y 0
2 (0, 1

2 ,
1
2 ) Y 0

2 −447.8 −611.0 r

Y 0
2 ( 1

2 ,
1
2 , 0) Y 0

2 413.4 564.0 p

Y 0
2 (0, 1

2 ,
1
2 ) Y 2,c

2 −497.2 −678.4 t

Y 2,c
2 (0, 1

2 ,
1
2 ) Y 2,c

2 126.3 172.3 s

Y 2,c
2 ( 1

2 ,
1
2 , 0) Y 2,c

2 −734.8 −1002.7 q

Table 5. Calculated parameters vττ
′

22 (n− n′), τ = T2g for n,
τ ′ = Eg for n′, in K. First site coordinates (n) are (0, 0, 0).

Sτ2 n′ Sτ
′

2 γ−Ce α−Ce Ref. [50]

Y 1,s
2 (0, 1

2 ,
1
2 ) Y 0

2 98.9 271.3 −λ

Y 1,s
2 (0, 1

2 ,
1
2 ) Y 2,c

2 −171.3 −470.0 −µ

Y 2,s
2 ( 1

2 ,
1
2 , 0) Y 0

2 −197.8 −542.7 −ν

Similar to the situation for multipolar interactions in
molecular crystals [2,3], we distinguish interactions where
both l and l′ are different from zero from those where
l 6= 0, but l′ = 0. The first ones are the orientational pair
interactions and from symmetry it follows that the lowest
allowed values are l = 2 and l′ = 2, i.e. quadrupoles. The
quadrupolar SAF’s consist of a doublet of Eg symmetry,

S
Eg,k

2 (n̂), k = 1, 2:

〈n̂|Eg, 1〉 = 〈n̂|2, 0〉, (2.15a)

〈n̂|Eg, 2〉 = 〈n̂|2, (2, c)〉, (2.15b)

and a triplet of T2g symmetry, S
T2g,k
2 (n̂), k = 1− 3:

〈n̂|T2g, 1〉 = 〈n̂|2, (1, s)〉, (2.16a)

〈n̂|T2g, 2〉 = 〈n̂|2, (1, c)〉, (2.16b)

〈n̂|T2g, 3〉 = 〈n̂|2, (2, s)〉. (2.16c)

The calculated values of the matrix elements vττ
′

22 (n−n′),
(2.10), are quoted in Tables 3-5. We took a = 9.753 a.u.
for γ−Ce and a = 9.165 a.u. for α-Ce.

We will neglect electronic orientational pair interac-
tions with higher values of l and l′ and retain only
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the quadrupolar interaction VQQ. Defining the operator

ρij(n) = |i〉n〈j|n, (2.17)

we obtain

VQQ =
∑

ρij(n) vQQ
ij, i′j′(n− n′) ρi′j′(n

′), (2.18)

with

vQQ
ij, i′j′(n− n′) =

∑
vττ

′

22 (n− n′) cτ2(ij) cτ
′

2 (i′j′). (2.19)

The interactions where l 6= 0, l′ = 0, contribute to the
crystal field VCF. The crystal field has unit cubic symme-
try, the lowest non trivial value of l is 4 and τ = (A1g, 1),
where A1g is the unit representation of Oh. The leading

coefficients are v
A1g

l
A1g

0 , with l = 4, 6. Notice that

c
A1g

0 (i′j′) =
1
√

4π
δi′ j′ . (2.20)

We then obtain

V
(f)

CF (n) =
∑
n′

V
(f)

CF (n,n′)

=
12
√

4π

∑
l

v
A1g

l
A1g

0

∑
ij

ρij(n)c
A1g

l (ij). (2.21)

Notice that v
A1g

l
A1g

0 as a consequence of cubic symmetry,
is the same for all 12 nearest neighbors n′ of a given site
n, and as a consequence of lattice translational symmetry,
is independent of n. With the separation of V (n,n′) in

VQQ and V
(f)
CF , we obtain

U (f) = U
(f)
QQ + U

(f)
CF , (2.22a)

where

U
(f)
QQ =

1

2

∑
n,n′

VQQ(n,n′), (2.22b)

U
(f)
CF =

∑
n

V
(f)

CF (n). (2.22c)

Taking into account the other contribution to the crystal
field VCF, equation (2.4), and the spin-orbit coupling Vso,
the total potential of the 4f electron system is given by

U = U
(f)
QQ + U0, (2.23)

where

U0 =
∑
n

V0(n), (2.24)

with V0 given by equation (2.3). Expressing V0, (2.7), in
terms of ρij we find

V0(n) =
∑
i

ρii(n)εi. (2.25)

In Appendix B we show that the anisotropic quadrupolar
interaction cannot be screened by the inner closed shells or
by the conduction band electrons. The electronic densities
associated with closed shells or with the conduction band
are essentially isotropic.

In the next section we will study the collective ori-
entational behavior which follows from the potential U ,
equation (2.23).

3 Phase transition

Here we will discuss the transition Fm3̄m → Pa3̄ of the
4f quadrupoles. In order to study collective phenomena
we introduce Fourier transforms of the electronic density
operator:

ρij(q) =
1
√
N

∑
n

eiq·X(n)ρij(n), (3.1)

where q is the wave vector. The orientational pair inter-
action now reads

U
(f)
QQ =

1

2

∑
q

∑
ρij(q) vQQ

ij, i′j′(q) ρ†i′j′(q), (3.2)

where

vQQ
ij, i′j′(q) =

∑
τ τ ′

vτ τ
′

22 (q) cτ2(ij) cτ
′

2 (i′j′)∗, (3.3a)

with

vτ τ
′

22 (q) =
∑
h

eiq·X(h)vτ τ
′

22 (h). (3.3b)

The matrix vτ τ
′

2 2 (q) is given by explicit expressions
(A1, A6) and (A7) of reference [50], while the correspond-
ing interaction parameters (α, β, . . . ) are cited in Ta-
bles 3-5. We diagonalize the 5×5 matrix v22(q) and write

vτ τ
′

22 (q) =
5∑

α=1

e∗α(τ,q)λα(q) eα(τ ′,q), (3.4)

where λα(q) are the eigenvalues and eα(q) the eigenvec-
tors. We have studied the eigenvalue spectrum throughout
the Brillouin zone. We find that the largest negative eigen-
value, which is λX+

2
= −3950 K, occurs at the X point

of the Brillouin zone (qX
x = (2π/a)(1,0,0), etc., where

a = 9.753 a.u. is the cubic lattice constant of γ−Ce) and
is due to a normal mode with Eg components. This mode,
which we call X+

2 -mode, corresponds to a basis function
of the irreducible representation X+

2 of the space group
Fm3̄m, and its condensation would lead to a tetragonal
structure P42/mnm. The second largest negative eigen-
value (λX+

5
= −4γ = −3491 K) is doubly degenerate

and belongs to T2g components. This mode, which we call
X+

5 -mode, belongs to the irreducible representation X+
5 of

Fm3̄m and its condensation leads to a Pa3̄ structure. No-
tice, that in a Pa3̄ structure the center of mass positions
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still form a fcc lattice and hence we consider this case to
be relevant for the isostructural phase transition γ → α
in Ce. The situation is reminiscent of orientational phase
transitions in molecular crystals, where a Pa3̄ structure is
associated with orientational molecular ordering while the
lattice remains cubic [51,3]. In the case of Ce we propose
that the quadrupolar charge density fluctuations of the
4f electrons orders in a Pa3̄ structure at the transition
γ → α.

Defining “orientational” normal coordinates

ρα(q) =
∑
ij

∑
τ

ρij(q) cτ2 (ij) eα(τ,q), (3.5)

we rewrite expansion (3.2) as:

U
(f)
QQ =

1

2

∑
q

∑
α

ρα(q)λα(q) [ρα(q)]†. (3.6)

Which mode α condenses first at the X point depends not
only on the eigenvalue but also on the value of the cor-
responding single particle susceptibility y(2)(α)/T [3,50]
where y(2)(α) ≡ 〈ρα(n) ρα(n)〉0. In case of a second order
transition, the transition temperature would be given by

Tc = y(2)(α) |λα(qX
x )|. (3.7)

In Appendix C we will discuss the prevalence of a transi-
tion to a Pa3̄ structure over a transition to P42/mnm. In
the following we will describe the condensation scheme for
Pa3̄ and exploit the close analogy with the orientational
ordering transition [3] in solid C60. The T2g−T2g interac-
tion is accounted for by a submatrix [3,50] of dimension
3 of v22(q) which becomes diagonal at qX

x with nonzero
elements [λ1, λ2, λ3], where λ1 > 0 and λ2 = λ3 = −λX ≡
λX+

5
< 0. Here the indices 1-3 correspond to those of equa-

tions (2.16a-2.16c). We see that the modes with row index
k = 2 and k = 3 are degenerate, the corresponding eigen-
vectors are e(2,qX

x ) = (0, 1, 0) and e(3,qX
x ) = (0, 0, 1),

respectively. We denote the corresponding normal coordi-
nates by ρ(k)(qX

x ), where (k) stands for τ = (T2g, k):

ρ(k)(qX
x ) =

∑
ij

ρij(q
X
x ) c

(k)
2 (ij), k = 2, 3. (3.8a)

Similarly at qX
y = (2π/a)(0,1,0) the degenerate normal

coordinates with the largest eigenvector λ(qX
y ) = −λX are

ρ(k)(qX
y ) =

∑
ij

ρij(q
X
y ) c

(k)
2 (ij), k = 1, 3, (3.8b)

and at qX
z = (2π/a)(0,0,1),

ρ(k)(qX
z ) =

∑
ij

ρij(q
X
z ) c

(k)
2 (ij), k = 1, 2. (3.8c)

The functions ρ(k)(qX
• ) form a basis of the six dimensional

irreducible representation X+
5 of the space group Fm3̄m. A

possible condensation scheme for the transition Fm3̄m→
Pa3̄ is then given by

ρ(3)e(qX
x ) = ρ(1)e(qX

y ) = ρ(2)e(qX
z ) ≡ ρ

√
N 6= 0, (3.9a)

ρ(2)e(qX
x ) = ρ(3)e(qX

y ) = ρ(1)e(qX
z ) = 0, (3.9b)

where the subscript e stands for a thermal expectation
value and where ρ is the order parameter amplitude. The
condensation scheme corresponds to a domain and there
are eight possible domains of Pa3̄. The quantities ρ(k)(qX

• )
in (3.9a) are the order parameter variables. It is convenient
to write

ρ(k)e(q) =
√
N ρ (δq,−qX

ξ
+ δq,qX

ξ
)/2, (3.10)

where k = 1, 2, 3 corresponds to ξ = y, z, x respectively.
Using the quadrupolar interaction (3.6) for T2g modes, we
obtain the mean field (MF) interaction

UMF = −λXρ
√
N [ρ(1)(qX

y ) + ρ(2)(qX
z ) + ρ(3)(qX

x )].

(3.11)

The Pa3̄ structure has four sublattices which contain the
sites (0,0,0), (a/2)(0,1,1), (a/2)(1,0,1), (a/2)(1,1,0) and
which we label by {ni}, i = 1 − 4, respectively. Taking
into account equations (3.8a, 3.9a, 3.1), we have

ρ(3)(qX
x ) =

1
√
N

∑
ij

[
∑
n1

ρij(n1) +
∑
n2

ρij(n2)

−
∑
n3

ρij(n3)−
∑
n4

ρij(n4)] c
(3)
2 (ij), (3.12)

and similar expressions for ρ(1)(qX
y ) and ρ(2)(qX

z ). The
mean field interaction on sublattice {n1} is then given by

UMF(n1)=−λXρ
∑
ij

[c
(3)
2 (ij)+c

(2)
2 (ij)+c

(1)
2 (ij)]ρij(n1).

(3.13)

The order parameter components at site n are defined by

ρ(k)(n) =
∑
ij

c
(k)
2 (ij) ρij(n), (3.14)

and the mean field interaction at site n1 becomes

UMF(n1) = −λXρ [ρ(3)(n1) + ρ(2)(n1) + ρ(1)(n1)].
(3.15)

The mean field Hamiltonian reads

HMF(n1) = UMF(n1) + V0(n1), (3.16)

where V0(n1) is given by equation (2.25). The order pa-
rameter amplitude is obtained by solving the mean field
equation

ρ =
Tr{ρ(k)(n1) exp[−HMF(n1)/T ]}

Tr{exp[−HMF(n1)/T ]}
· (3.17)
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Symmetry implies that this expression is independent of
k. In the disordered phase, HMF(n) reduces to V0(n). The
single particle density operator then reads

w = e−V0(n)/T =
∑
i

ρii e−εi/T , (3.18)

and the sum of states is given by

Z0 = Tr(w) = 2e−ε(Γ7,1)/T + 4e−ε(Γ8,1)/T + 2e−ε(Γ6)/T

+ 4e−ε(Γ8,2)/T + 2e−ε(Γ7,2)/T , (3.19)

where the argument in parentheses refers to Γ, µ, Table 1.
The order parameter equation (3.17) then reduces to

〈ρ(k)〉 =
Tr {wρ(k)(n)}

Z0
· (3.20)

In the disordered phase one finds 〈ρ(k)〉 = 0, where Γ ′

in (k) = (Γ ′, k) is one of the representations T2g or Eg.
Indeed,

Tr {wρ(k)(n)} =
∑
Γ

e−ε(Γ )/T
∑
iΓ

c
(k)
2 (iΓ iΓ ) = 0, (3.21)

since ∑
iΓ

c
(k)
2 (iΓ iΓ ) = 0. (3.22)

Here Γ = Γ7, 1 (iΓ = 1, 2); Γ8, 1 (iΓ = 3 − 6); Γ6 (iΓ =
7, 8); Γ8, 2 (iΓ = 9− 12); Γ7, 2 (iΓ = 13, 14); see Table 1.
To prove equation (3.22) we use the integral form (2.13)

of c
(k)
2 (iΓ iΓ ):∑
iΓ

c
(k)
2 (iΓ iΓ ) =

∫
dΩ Sτl=2(n̂)

∑
iΓ

〈n̂|iΓ 〉
∗〈n̂|iΓ 〉

=

∫
dΩ Sτ2 (n̂)S′

A1g(n̂), (3.23)

where

S′
A1g(n̂) =

∑
iΓ

〈n̂|iΓ 〉
∗〈n̂|iΓ 〉 (3.24)

is an invariant function according to generalized Unsöld
theorem [48]. Therefore, the integral in (3.23) equals zero
unless τ = A1g.

4 Free energy

Starting with the mean field Hamiltonian (3.16) and us-
ing methods [2,3] which are familiar from the theory of
orientational phase transitions in molecular crystals, we
have derived a Landau expansion [52] of the free energy
F in the Pa3̄ phase (which we associate with α-Ce). Up
to fourth order we obtain

(F/N) = F0/N +Aρ2 +Bρ3 + Cρ4. (4.1)

Here F0 is the free energy (per atom) in the disordered
phase:

F0 = −T lnZ0, (4.2)

where Z0 is given by equation (3.19). The expansion co-
efficients are given by

A =
3

2

[
T

x(2)
− λX

]
, (4.3)

B = −T x(3)
123 [x(2)]−3, (4.4)

C =
T

8(x(2))4

[
9(x(2))2− x(4)

1111− 6x
(4)
1122 +

12(x
(3)
123)2

x(2)

]
.

(4.5)

Here the quantities x(j), j = 2, 3, 4 are single particle ex-
pectation values

x(2) = 〈(ρ(k)(n))2〉0, (4.6a)

x
(3)
123 = 〈ρ(1)(n) ρ(2)(n) ρ(3)(n)〉0, (4.6b)

x
(4)
1111 = 〈(ρ(k)(n))4〉0, (4.6c)

x
(4)
1122 = 〈(ρ(k)(n))2 (ρ(k′)(n))2〉0, k 6= k′. (4.6d)

These quantities are calculated with the density matrix
w, equation (3.18). We readily obtain

x(2) =

∑
ij

c
(k)
2 (ij) c

(k)
2 (ji) e−εi/T

 /Z0, (4.7a)

x
(3)
123 =

∑
ijh

c
(1)
2 (ij) c

(2)
2 (jh) c

(3)
2 (hi) e−εi/T

 /Z0,

(4.7b)

x
(4)
1111 =

∑
ijhl

c
(1)
2 (ij)c

(1)
2 (jh)c

(1)
2 (hl)c

(1)
2 (li)e−εi/T

 /Z0,

(4.7c)

x
(4)
1122 =

∑
ijhl

c
(1)
2 (ij)c

(1)
2 (ji)c

(2)
3 (hl)c

(2)
4 (li)e−εi/T

 /Z0.

(4.7d)

In deriving the Landau expansion for the free energy we
have assumed that quantum mechanical fluctuations of
the quadrupolar order parameter away from its expecta-
tion value are negligible. Such fluctuations occur in princi-
ple as a consequence of the non-commutativity of UMF(n)
and V0(n). Here we argue that they are insignificant since
a large number of quadrupoles are involved in the order-
ing process. The expectation values (4.7a-4.7d) account
for thermal fluctuations.

We now discuss the phase transition on the basis of the
Landau free energy (4.1). Since the product of the three

T2g components is a cubic invariant, x
(3)
123 6= 0, the phase
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Fig. 2. Temperature dependence of the order parameter am-
plitude ρ.
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Fig. 3. The angular dependence of four functions
{ρ(1)(n)Y 1,s

2 + ρ(2)(n)Y 1,c
2 + ρ(3)(n)Y 2,s

2 }/ρ which represent
quantum quadrupoles on the four sublattices {ns} of Pa3̄ struc-
ture, α-Ce. The order parameter components ρ(k) e(n), equa-
tion (3.14), on the sublattices are also shown.

transition is of first order. The transition temperature is
obtained from the solution of

T1 = x(2)(T1)

[
λX +

B2(T1)

6C(T1)

]
· (4.8)

The order parameter amplitude differs from zero for
T ≤ T1

ρ(T ) =
−3B −

√
9B2 − 32AC

8C
, (4.9)

with a discontinuity at T1:

ρ(T1) = −
B(T1)

2C(T1)
· (4.10)

Numerical calculations (see Appendix C for details) give
the transition temperature T1 = 85.6 K and the order
parameter discontinuity ρ(T1) = −0.06, Figure 2.

Physically the phase transition consists of an ordering
of the electronic quadrupolar density associated with the
4f electrons in a Pa3̄ structure, see Figure 3.

Studies of thermoelastic phenomena [53] performed for
the orientational phase transition in pristine C60 which is
of the same type, Fm3̄m → Pa3̄, show that there is a
softening of the coefficient C in the Landau expansion. As
a result the transition temperature T1 will further increase
and this conclusion should hold for the phase transition in
cerium. However, specific estimations of this effect depend
on the elastic constants at T1 which are unknown. We
recall that on cooling the γ → α transition occurs [4] at
∼ 100 K (∼ 170 K on warming) and conclude that the
calculated transition temperature T1 > 86 K is in fair
correspondence with experiment.

Early experiments [54,4] have shown that the first or-
der phase transition line between the γ−α phases ends in a
critical point at T ∼ 550 K and P ∼ 1.8 GPa. Within the
present theory the existence of such an end point where
the phase transition becomes second order would imply
the vanishing of the third order coefficient B in the Lan-
dau expansion (4.1) or equivalently the vanishing (com-
pare with Eq. (4.4)) of the single particle expectation value

x
(3)
123, equation (4.7b). With increasing T and P , the cu-

bic crystal field becomes more spherical which leads to a

decrease of x
(3)
123. Despite these plausibility arguments we

admit that the present theory does not prove the existence
of a critical point. On the other hand it has been observed
that the prolongation of the phase transition line beyond
the critical point crosses the liquid-solid transition curve
at its minimum. We expect that near the experimental
critical point and beyond, the solid becomes more liquid
like (dislocations). We feel that more detailed experimen-
tal information is needed which could serve as a guideline
for the theory.

5 Lattice contraction

We now consider the Ce atoms located on a non rigid
fcc lattice. We denote the lattice displacement of the Ce
nucleus at site n by u(n). We assume that the core and
valence electrons (in particular the 4f electron shell) fol-
low adiabatically the nuclear displacements. Denoting the
equilibrium nuclear positions by X(n), n = 1 − N , we
write for the 4f electron coordinates

R(n) = X(n) + r(n) + u(n). (5.1)

We assume again that the electron is located on a sphere
with radius |r(n)|, centered around the nuclear position
which now is X(n) + u(n). We start from the intersite
Coulomb potential between 4f electrons and insert expres-
sion (5.1) into (2.8b). Expanding then in terms of nuclear
displacements yields up to first order in u(n):

V (n,n′)=V (n,n′) |u=0 +
∑
ν

Vν(n,n′)[uν(n)−uν(n′)],

(5.2)
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where

Vν(n,n′) =
∂V (n,n′)

∂Xν(n)

∣∣∣∣
u=0

, (5.3)

ν = x, y, z being Cartesian indices. The term V (n,n′) |u=0

corresponds to the interaction potential (2.8b), which has
been studied in the previous sections. The coefficients
Vν(n,n′) still depend on the electronic configurations.
Expansion in terms of SAF’s Sτl (n̂) leads to

Vν(n,n′) =
∑
l l′

∑
τ τ ′

v′ν
ττ ′

ll′ (n− n′)Sτl (n̂)Sτ
′

l′ (n̂′), (5.4)

where

v′ν
ττ ′

ll′ (n−n′)=

∫
dΩ(n)dΩ(n′)Vν(n,n′)Sτl (n̂)Sτ

′

l′ (n̂′).

(5.5)

The contribution of the non rigid lattice to the intersite
Coulomb potential now reads

URRT =
1

2

∑
nn′

∑
ν

∑
l l′

∑
τ τ ′

v′ν
ττ ′

ll′ (n− n′)

× Sτl (n̂)Sτ
′

l′ (n̂′) [uν(n)− uν(n′)]. (5.6)

In analogy with the corresponding interaction in molecu-
lar crystals [2], this contribution is referred to as rotation-
rotation-translation (RRT) coupling. The lattice contrac-
tion that accompanies the orientational phase transition
Fm3̄m→ Pa3̄ in solid C60 has been studied before by ex-
periment [55] and by theory [53], and the following consid-
erations are inspired by analogies with orientational phase
transitions.

In the following we restrict ourselves to quadrupolar
interactions l = 2 of T2g symmetry. Proceeding as in Sec-
tion 2 we rewrite expression (5.6) as an operator in the
space of 4f electrons, UQQT .

= URRT:

UQQT =
1

2

∑
nn′

ρ(k)(n)v′ν
kk′

22 (n−n′)ρ(k′)(n′)[uν(n)−uν(n′)].

(5.7)

Here summation is understood over repeated indices ν, k,
k′. The indices k(k′) refer to the three T2g components.
The electronic density operator is defined by

ρ(k)(n) =
∑
ij

c
(k)
2 (ij)ρij(n), (5.8)

where i(j) are the electronic states. We rewrite the inter-
action (5.7) in reciprocal space. The Fourier expansion of
the nuclear displacements reads

u(n) = (Nm)−1/2
∑
q

u(q)eiq·X(n), (5.9)

where m is the nuclear mass and N the total number of
Ce atoms in the lattice. Defining

ρ(k)(q) =
∑
ij

c
(k)
2 (ij)ρij(q), (5.10)

(compare with Eqs. (3.8a–c)), we obtain

UQQT =
i

2

∑
q

∑
p

v′ν
kk′

22 (q,p)ρ(k)(−p− q)ρ(k′)(p)uν(q),

(5.11)

where

v′ν
kk′

22 (q,p) = (Nm)−1/2
∑
κ

v′ν
kk′

22 (κ)

× cos
[(

p +
q

2

)
·X(κ)

]
sin

[
qX(κ)

2

]
·

(5.12)

Here κ stands for (n− n′) and X(κ) for X(n)−X(n′) =
X(n − n′). Exploiting the periodicity of the rigid lattice,
we see that the summation over κ corresponds to the sum-
mation over the neighbors n′ of the site n. In the follow-
ing we restrict ourselves to twelve nearest neighbors on
the fcc lattice. In Section 3 we have seen that the ori-
entational phase transition is driven by the condensation
scheme (3.9a, b) at the X point of the Brillouin zone. In
the long wavelength limit q → 0, and for p close to the
star of pX, expression (5.11) becomes diagonal in k:

UQQT = i
∑
qp

∑
ν(k)

′
v′ν
kk
22 (q,p)ρ(k)(−p)ρ(k)(p)uν(q).

(5.13)

Here the sum
∑′

refers to ν = x, y for k = 3, to ν = z, x
for k = 2 and to ν = x, y for k = 1 (compare with the
condensation scheme). The coupling matrix reduces to

v′
33
ν (q,p) = (Nm)−1/2Λqνa cos

(pxa
2

)
cos
(pya

2

)
(5.14)

for ν = x or y. The expressions for v′22
ν and v′11

ν follow by
permutation of indices. The coupling constant Λ is given
by equation (5.5) for the particular case

Λ = v′
33
ν (κ), (5.15)

where ν = x or y and X(κ) = (a/2)(1, 1, 0). Notice that

v′
22
ν (κ) and v′

11
ν (κ) have the same value Λ for ν = z

or x and X(κ) = (a/2)(1, 0, 1) and for ν = z or y and
X(κ) = (a/2)(0, 1, 1), respectively. These properties re-
flect the symmetry of the T2g functions and of the fcc
lattice. We find, by using the Coulomb potential (2.8b):

Λ = −445 K/Å. (5.16)

Proceeding as in reference [53], we find that the QQT
interaction leads to an additional contribution to the free
energy per atom:

FQQT[ε, ρ] = −2aΛρ2(εxx + εyy + εzz) (5.17)

where ενν are the longitudinal strains and ρ the quadrupo-
lar order parameter amplitude. Combining FQQT[ε, ρ]
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with the elastic contribution FTT[ε] to the free energy
of a cubic lattice, we obtain that minimization of the free
energy leads to

εxx = εyy = εzz = 8a−2ΛκLρ
2, (5.18)

where κL = (c011 + 2c012)−1 is the bare linear compress-
ibility and c011 and c012 are the elastic constants. Since
Λ < 0, we find that equation (5.18) accounts for a con-
traction of the lattice in the cubic direction at the first
order transition γ → α. From equation (5.18) we obtain
that the change of the lattice constant a at the transi-
tion is given by ∆a = aεxx = −8|Λ|κLρ2/a. With a bulk
modulus [56] (3κL)−1 = 101.6 kbar we find a contrac-
tion ∆a ≈ −0.001 Å. Although the present theory gives
the correct sign, the numerical value is about two orders of
magnitude smaller than experimental values. However, we
should keep in mind that within the present approach the
lattice deformation is treated as a perturbation of the rigid
lattice only. Experimentally there is evidence for a partial
or incomplete softening of the γ−Ce lattice as the γ → α
transition is approached with decreasing temperature (for
a review see Sect. 2.4.5 in Ref. [4]). Beside the coupling
UQQT we are considering here, there exists also a bilinear
coupling UQT between quadrupolar fluctuations of T2g or
Eg symmetry and the corresponding shear strains. Such
bilinear coupling, which are well known in Jahn-Teller sys-
tems [57] and in molecular crystals [58] can act as driv-
ing mechanism of a structural phase transition where the
lattice structure changes from cubic to lower symmetry
(say, orthorhombic etc.). Since the lattice structure in the
γ → α transition of Ce remains fcc, the coupling UQT

cannot be the driving mechanism, however its presence
should lead to partial softening phenomena [56]. A self
consistent approach which takes systematically into ac-
count the interplay between quadrupolar ordering and a
partial softening of the lattice would lead to an increase
of lattice contraction. Such a self-consistent calculation is
beyond the scope of the present work.

In reference [53] the Clausius-Clapeyron equation has
been derived and it has been shown that the transition
temperature T1 is a linear function of external pressure P
with a positive coefficient of the proportionality. The the-
ory then can be applied to the phase transition in cerium
with

dT1

dP1
= 4a|Λ|κLx

(2), (5.19)

which accounts for the linear pressure increase of the γ/α
boundary of the PT diagram of cerium [4].

6 Conclusions

We have calculated the crystal field of γ−Ce which is
in good correspondence with experiment. We have stud-
ied anisotropic quadrupolar interactions associated with
quantum transitions of localized 4f electrons in cerium.
We have found that the γ−α phase transition can be de-
scribed in terms of condensation of quadrupolar density

fluctuations according to the Fm3̄m → Pa3̄ scheme. The
phase transition is of first order. The coupling of electronic
quadrupolar density fluctuations to lattice displacements
leads to a contraction of the cubic lattice at the transition.
We find that the transition temperature increases linearly
with pressure. Quadrupolar ordering combined with a cou-
pling to lattice displacements could possibly account for
transitions to phases of lower symmetry than Pa3̄. On
the basis of our study of 4f charge density fluctuations
in the disordered γ phase the following classification of
other phases of cerium seems plausible. The tetragonal
phase [25,4] which is reached under some conditions with
applied pressure can be attributed to the condensation
of the X+

2 mode discussed in Section 3 and Appendix C.
The condensation scheme Fm3̄m→ Pmnn where only two
components condense at a single arm of the X point [51],
for example ρ(1)e(qX

z ) and ρ(2)e(qX
z ), (3.8c) could lead to

the orthorhombic α′ phase [26,4] of cerium.
Quadrupolar interactions between density fluctuations

of 4f , 3d and 2p degenerate orbitals can be used in a
description of molecules and solids which goes beyond the
standard Hartree-Fock scheme. The formalism which has
been developed in the present paper can be applied to
different quantum objects.

Our considerations have been based on the antiferro-
rotational ordering of electric quadrupoles which are due
to quantum density fluctuations of the 4f electrons. The
existence of the Pa3̄ symmetry of the ordered phase which
we have assigned with α-Ce in the present theory can be
checked by X-ray synchrotron radiation experiments. We
are presently investigating the effect of quadrupolar inter-
actions on magnetic properties.

We thank A.P.Murani and D.Schoemaker for helpful discus-
sions about spin-orbit coupling. This work has been finan-
cially supported by the Fonds voor Wetenschappelijk On-
derzoek, Vlaanderen, and the Onderzoeksfonds, Universiteit
Antwerpen.

Note added in proof

Stassis et al. [59] have used polarized neutron scattering
techniques to assess the spatial distribution and temper-
ature dependence of the magnetization induced in a sin-
gle crystal of cerium. They have found that the (200) re-
flection drops significantly at ≈ 100 K as a result of the
γ → α transformation, though other reflections are ob-
served down to 90 K and no change in their scattering an-
gles is detectable. These authors interpret their results as
an indication that some ions of the γ−Ce crystal change
their electronic configuration. Using the same technique
Moon and Koehler [60] have studied the induced magne-
tization in the polycrystalline alloy Ce0.736Th0.264 in both
the γ and α phases. They have observed some impurity
lines, the strongest of which could be indexed as a NaCl-
type structure. Are these experiments an indication that
the space group of α-Ce is different from Fm3̄m?
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Appendix A

The spin-orbit coupling reads

Vso = ζLS =
ζ

2
Lσ =

ζ

2

{
Lzσz+

1

2
(L+σ++L−σ−)

}
·

(A.1)

Here ζ is a spin-orbit coupling constant, σ = {σ1, σ2, σ3}
are Pauli spin matrices and L± = Lx±iLy, σ± = σx±iσy.
In the following we use ζ = 862 K, which corresponds
the experimentally detected splitting [7] ∆so ≈ 260 meV
between the 6-fold degenerate level J = 5/2 and 8-fold
degenerate J = 7/2. In the basis of spin-orbitals 〈n̂|l =
3,m; ± 1

2 〉 the matrix elements of Vso, (A.1) are given by

〈l,m′; +
1

2
|Vso|l,m; +

1

2
〉 = mδm,m′ (ζ/2),

〈l,m′; −
1

2
|Vso|l,m; −

1

2
〉 =−mδm,m′ (ζ/2),

〈l,m′; −
1

2
|Vso|l,m; +

1

2
〉 = δm,m′−1, (ζ/2) (A.2)

× n
√

(l +m)(l −m+ 1),

〈l,m′; +
1

2
|Vso|l,m; −

1

2
〉 = δm,m′+1 (ζ/2)

× n
√

(l −m)(l +m+ 1),

where n = −1 for m,m′ > 0 and n = 1 for m,m′ ≤ 0 since
for Yml we take the phase convention of reference [46]. Di-
agonalizing Vso one obtains two levels, E 5

2
= −1724 K and

E 7
2

= 1293 K. The corresponding eigenvectors can be cho-

sen in the form 〈n̂|l = 3, s = 1
2 ; J, Jz〉 given by the vector

model for addition of orbital and spin momenta [47].
In a cubic crystal the free-ion energy levels are split

by a crystal electric field. In our approach the crystal field
VCF is given by (2.4) and is a potential field experienced
by a single 4f electron when only spherically symmetric
Coulomb contributions (l′ = 0) from neighboring sites and
similar terms from the electronic density in the interstitial
regions are taken into account. The crystal field has unit
(A1g) cubic symmetry and does not possess explicit spin
dependence. However, VCF is not diagonal in the basis
of |l = 3, s = 1

2 ; J, Jz〉. Therefore, the eigenfunctions
and the energy spectrum of V0 = Vso + VCF, have to be
obtained numerically by diagonalizing the corresponding
matrix of V0. VCF can be written in the form similar to
equation (2.21):

VCF(n) = Λ
∑
ij

ρij(n)c
A1g

l (ij) (A.3)

where

Λ = Λ(n) + Λ(core) + Λ
(c)
MT + Λ

(c)
i + Λ(f). (A.4)

Here we distinguish two contributions from the conduc-

tion electrons, Λ
(c)
MT being due to the band electron density

inside a muffin-tin (MT) sphere with the radius RMT =

a/2
√

2 = 3.448 a.u. and Λ
(c)
i due to the uniformly dis-

tributed conduction electron density in the interstitial re-
gion. Λ(n), Λ(core), Λ(f) are due to nuclei, core and 4f
contributions, respectively. For the latter term we have

Λ(f) = 12√
4π
v

A1g

l=4
A1g

0 , (we restrict ourselves to l = 4 in

(2.21)), and similar expressions for Λ(n), Λ(core) and Λ
(c)
MT.

Collecting these terms together we obtain

Λ(n) + Λ(core) + Λ
(c)
MT + Λ(f) =

12
√

4π
QMT|v

A1g

l=4
A1g

0 |,

(A.5)

where QMT = +0.9136 [45] is the total charge inside the
MT sphere. From electrostatic considerations it follows

that Λ
(c)
i is

π

3
√

2− π
≈ 2.853 times larger and of the same

sign as the contribution from nearest MT spheres. As a
result we have

Λ =
46.236
√

4π
QMT|v

A1g

l=4
A1g

0 | ≈ 346 K. (A.6)

By means of relations (2.13), (2.5) we obtain

VCF(n) = Λ
∑
ij

∑
t t′

|i〉〈i|t〉〈t|S
A1g

4 (n)|t′〉〈t′|j〉〈j|

= Λ
∑
ij

∑
t t′

ρij(n)c
A1g

4 (t t′)〈i|t〉〈t′|j〉, (A.7)

where the symmetry adapted function S
A1g

4 reads [46]

S
A1g

4 (n) =

√
7

12
〈n̂|4, 0〉+

√
5

12
〈n̂|4, (4, c)〉, (A.8)

the coefficients c
A1g

4 (t t′) = 〈t|S
A1g

4 (n)|t′〉 are given in a
basis of functions 〈n̂|t〉 and 〈i|t〉 defines the matrix of the
corresponding unitary transformation. Of particular inter-
est are the base functions where the spatial parts are given
by the following symmetry adapted combinations [46] of
〈n̂|l = 3,m〉:

〈n̂|T1u, 1〉 =

√
3

8
〈n̂|3, (1, c)〉 −

√
5

8
〈n̂|3, (3, c)〉,

〈n̂|T1u, 2〉 =

√
3

8
〈n̂|3, (1, s)〉+

√
5

8
〈n̂|3, (3, s)〉, (A.9)

〈n̂|T1u, 3〉 = −〈n̂|3, 0〉;

〈n̂|T2u, 1〉 = −

√
5

8
〈n̂|3, (1, c)〉 −

√
3

8
〈n̂|3, (3, c)〉,

〈n̂|T2u, 2〉 =

√
5

8
〈n̂|3, (1, s)〉 −

√
3

8
〈n̂|3, (3, s)〉, (A.10)

〈n̂|T2u, 3〉 = 〈n̂|3, (2, c)〉;

〈n̂|A2u〉 = 〈n̂|3, (2, s)〉. (A.11)
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We recall that T1u, T2u and A2u are irreducible repre-
sentations of the cubic group Oh. We construct the ba-
sis which we will call crystal field representation in the
following way. As first 7 functions 〈n̂|t〉 we take
〈n̂|T1u, 1〉u(sz), . . . , 〈n̂|A2u, 1〉u(sz) in the order (A.9–
A.11) with the spin component sz = + 1

2 . As functions
〈n̂|t〉, t = 8 − 14 we take the same functions (A.9–A.11)
with the other spin component sz = − 1

2 . In the crystal
field representation we have

c
A1g

4 (t t′) = c
A1g

4 (t t) δt t′ , (A.12)

where c
A1g

4 (t t) = c(Γt) depends only on the representation
Γt = A2u, T1u, T2u. We have obtained c(A2u) = −0.23505,
c(T1u) = 0.11752 and c(T2u) = −0.03917. Applying
(A.12) to (A.7) we find

VCF(n) =
∑
ij

∑
t

ρij(n)〈i|t〉εCF
t 〈t|j〉, (A.13)

where

εCF
t = Λ c(Γt). (A.14)

The form (A.13) implies that the operator VCF(n) is diago-
nal in the crystal field representation. In the absence of the
spin-orbit coupling Vso the single particle energy spectrum
is given by (A.14). We have obtained εCF(A2u) = −81.3 K,
εCF(T1u) = 40.7 K and εCF(T2u) = −13.6 K.

Carrying out numerical calculations we find convenient
to use a basis where the spatial parts of the base functions
〈n̂|b〉, b = 1 − 14 are given by real spherical harmonics,
(2.1a-2.1c). Namely, functions b = 1− 7 are

Y 0
3 u(sz), Y

1,c
3 u(sz), Y

2,c
3 u(sz), Y

3,c
3 u(sz), (A.15)

Y 1,s
3 u(sz), Y

2,s
3 u(sz), Y

3,s
3 u(sz),

with sz = + 1
2 , while seven functions with the same spa-

tial parts but sz = − 1
2 make b = 8 − 14. We con-

sider matrices with elements 〈b|Vso|b′〉 = Vso(b b′) and
〈b|VCF|b′〉 = VCF(b b′):

Vso(b b′) =
∑
mm′

∑
sz s′z

〈b|3,m, sz〉 (A.16)

× 〈3,m, sz|Vso|3,m
′, s′z〉〈3,m

′, s′z|b
′〉,

VCF(b b′) =
∑
t

〈b|t〉εCF
t 〈t|b

′〉. (A.17)

Here 〈3,m, sz|Vso|3,m′, s′z〉 are given by (A.2) while uni-
tary matrices 〈b|3,m, sz〉, 〈b|t〉 of transformations can be
deduced from equations (2.1a-2.1c) and (A.9-A.11). Incor-
porating Vso(b b′) and VCF(b b′) in V0(b b′), (2.3), we have
solved the secular equation

14∑
b′=1

〈b|V0|b
′〉〈b′|i〉 = εi 〈b|i〉, (A.18)

and have obtained the eigenvectors 〈b|i〉 and the eigenval-
ues εi, i = 1− 14. The corresponding energy spectrum is
given in Table 1.

Appendix B

Anisotropic quadrupolar contributions (that is, with l = 2,
l′ = 2) to the interaction V (n,n′) arise due to localized
4f states. The fully occupied core shells have density

ρcore(r) =
∑
jocc

∑
mj

|φ
mj
j (r)|2, (B.1)

where j stands for total angular momentum quantum
number. According to the generalized Unsöld theorem [48]
each shell stays invariant under all rotations, i.e. closed
shells have spherical symmetry. To be more precise, in
a cubic environment ρcore(r) has the symmetry A1g of
Oh, and can be expressed in terms of symmetry adapted
functions [46] with l = 0, 4, . . . However, deviations (l = 4,
. . . ) due to cubic symmetry are negligible for the inner
core electron density.

In the following we show that the application of the
generalized Unsöld theorem [48] requires that the total
electronic density of conduction electrons is an invariant
of the cubic group Oh. Leading terms are l = 0, 4, but the
main contribution is also isotropic, l = 0. A metallic wave
function ψn(k|r) is given by a band index n and a wave
vector k of the Brillouin zone (BZ) and the correspond-
ing eigenvalue (band energy) is En(k). The total metallic
electronic density reads

ρm(r) =
∑

En(k)≤EF

ψ∗n(k|r)ψn(k|r), (B.2)

where the summation is taken over all states in the Bril-
louin zone for all energies smaller than the Fermi energy
EF. In the following we will perform the summation in
(B.2) in two stages. First, we distinguish the contribu-
tions from electronic states with the same degenerate
value λ ≡ En(k). Apart from accidental degeneracies
En′(k

′) = En(k) the corresponding wave functions are
known to form the basis of an irreducible representation
of the space group G ≡ Fm3̄m. Indeed, for the chosen
value of k1 = k there is a set ψk1,1, ψk1,2, . . . ψk1,t of
t degenerate eigenfunctions with the eigenvalue λ, which
form a small representation (Γk1

p ) of the little group of k1.
(We use notations and definitions of the Ref. [46]). In the
physical approach one can say that there is a similar set
of t degenerate eigenfunctions with the same eigenvalue λ
at each of the other wave vectors Sk1 in the star of k1,
where S is a point-group operator. In the stricter mathe-
matical approach there is a set of (qt) eigenfunctions with
the eigenvalue λ,

{Tj|xj}ψk1,i(r), (B.3)

where j = 1− q describes different components due to the
star of k1 and i = 1 − t is due to a small representation
Γk1
p . (Here {Tj|xj} are any set of left coset representa-

tives of the little group of k1 in the space group G, see
for details Ref. [46].) The d = qt functions (B.3) form a
basis of the irreducible representation of the space group
Fm3̄m. The summation of squares of these functions gives
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an electronic density which according to the generalized
Unsöld theorem [48] is an invariant of Fm3̄m. The same
consideration holds for any energy level En′(k

′) of other
space symmetry which accidentally coincides with En(k).
On the second stage we perform the summation in (B.2)
on distinct values of En(k) ≤ EF. However, since all terms
corresponding to different En(k) are invariant, the total
sum (B.2) possesses the full (unit) symmetry of Fm3̄m.
Since the point group Oh is a subgroup of Fm3̄m, the to-
tal band electronic density, (B.2) will be invariant with
respect to Oh and therefore at each lattice site n it can
be expressed in terms of symmetry adapted functions of
A1g symmetry [46] with l = 0, 4, . . . These considera-
tions can be generalized for double valued representations
of the space group Fm3̄m if a spin-orbit coupling and spin
components of band electrons are taken into account.

We conclude that the quadrupolar electronic density
with symmetry T2g or Eg arises from transitions between
the 4f localized states. There is no contribution to l = 2
terms from itinerant electrons with energiesE ≤ EF which
comprise the ground state of metal. The charge density of
A1g symmetry where the isotropic contribution with l = 0
is dominant, cannot couple to the quadrupolar density
fluctuations at the X point of the Brillouin zone.

Appendix C

In the basis of functions 〈n̂|b〉, (A.15), the introduced co-
efficients cτl (b b′) = 〈b|Sτl |b

′〉, (2.13, 2.14) are real and are
cited in Table 2. The conversion to the functions 〈n̂|i〉
(see Appendix A) is given by the matrix elements 〈b|i〉,
(A.18). However, the quantities y(2)(X+

2 ), y(2)(X+
5 ) =

x(2), x
(3)
123, x

(4)
1111 and x

(4)
1122, (4.7a-4.7d) remain real. This

holds because for real functions Sτ2 (2.15a-2.16c) we ob-
tain cτ2(ij)∗ = cτ2(ji), equation (2.13). Besides, two ma-
trices 〈i|Sτl=2(ij)|j〉 are imaginary (for τ = T2g, 1 and
τ = T2g, 3) and the other (τ = T2g, 2) is real. We recall

that y(2)(X+
5 )/T and y(2)(X+

2 )/T are single particle sus-
ceptibilities of X+

5 and X+
2 modes, respectively (Sect. 3).

In the case of complete degeneracy where εi = ε0 for all
i = 1− 14 the factor exp(−ε0/T ) can be taken out of the
summations (4.7a)-(4.7d) and

e−ε0/T /Z0 = 1/14. (C.1)

For this special case the quantities y(2)(α) (α = X+
2 , X+

5 ),

x(2), x
(3)
123, x

(4)
1111 and x

(4)
1122 are independent on the choice

of basis. For example

y(2)(α) =
1

14

∑
ij

∑
p1,p2

∑
p3,p4

〈i|p1〉c
(k)
2 (p1p2)〈p2|j〉

×〈j|p3〉c
(k)
2 (p3p4)〈p4|i〉 (C.2)

=
1

14

∑
p1,p2

∑
p3,p4

c
(k)
2 (p1p2) c

(k)
2 (p3p4) δp1p4δp2p3

=
1

14

∑
p1p2

c
(k)
2 (p1p2) c

(k)
2 (p2p1).

Here (k) = (Eg, k = 1, 2) corresponds to the X+
2 mode

and (k) = (Tg, k = 1, 2, 3) to the X+
5 mode. Using the

Wigner-Eckart theorem [47,48] it is possible to show that
for such case

y(2)(α) = x
(2)
0 ≡

1

15π
≈ 0.02122, (C.3)

and is the same for density fluctuations of Eg and of T2g

type, (2.15a-2.16c). If the single particle energy spectrum
of V0 = Vso + VCF (see Appendix A) is taken into ac-
count then y(2)(α) depends on temperature and deviates

from the value x
(2)
0 . In general then y(2)(X+

5 ) 6= y(2)(X+
2 ).

However, at the limit T → ∞ the relation y(2)(X+
5 ) =

y(2)(X+
2 ) = x

(2)
0 holds. With decreasing temperature we

find that y(2)(X+
5 ) increases while y(2)(X+

2 ) decreases. At
the temperature T = 86 K we obtain x(2) = y(2)(X+

5 ) =
0.02334 and y(2)(X+

2 ) = 0.01804. Taking into account the
corresponding eigenvalues, λX+

2
and λX+

5
= −λX (Sect. 3)

we conclude that the X+
5 mode prevails and drives the

phase transition Fm3̄m → Pa3̄. Notice that in the other
limiting case T → 0, y(2)(α) 6= 0. Although at T → 0 only
the ground states i = 1, 2 of Γ7, 1 (Tab. 1) become popu-
lated the intermediate summations in (4.7a-4.7d) include
all allowed indices j, h, l = 1− 14.

For the other quantities (4.7a-4.7d) of the leading X+
5

mode we obtain x
(3)
123 = −1.303 × 10−3, x

(4)
1111 = 8.266 ×

10−4, x
(4)
1122 = 4.921×10−4. We find expansion coefficients

B = 8708 K and C = 71473 K, (4.4, 4.5).
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